
Distant Object Manipulation with Adaptive Gains in Virtual Reality
Xiaolong Liu1 Lili Wang1;2;3 * Shuai Luan1 Xuehuai Shi1 Xinda Liu1

1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
2Peng Cheng Laboratory, Shengzhen, China

3Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

b ca

Figure 1: Views of component manipulation during aircraft engine assembly are displayed. Green indicates the target, cyan
indicates the original position of the component to be manipulated, red shows the result of manipulation with gain = 1, and blue
shows the result with our method. In (a) and (b), the user translates the component to the target. In (a), the original component
is far from the target, and the gain computed with our method is greater than 1, so we translate the component faster than the
manipulation with gain = 1. In (b), the original component is already very close to the target, and our adaptive gain is less than 1,
so finer adjustments can be made to avoid the over manipulation problem caused by larger gains. In (c), the user scales the object
to overlap the target. There is still a small distance between the original component and the target, and the gain calculated with
our method is greater than 1, which can help the user quickly scale the component to a similar size to the target. When the two are
closer, the gain of our method will become smaller, thereby helping users fine-tune scaling.

ABSTRACT

Object Manipulation is a fundamental interaction in virtual real-
ity (VR). The efficiency and accuracy of object manipulation are
important to provide immersion to users. We propose a manipu-
lation method with adaptive gains to improve the efficiency and
accuracy of object manipulation in VR applications. First, we intro-
duce manipulation gains. We then design an experiment to collect
user behavior during manipulation to determine fitting functions for
calculating manipulation gain. At last, we design a user study to
evaluate the performance of our distant object manipulation method
with adaptive gains. The results show that, compared with the state
of the art methods, our method has a significant improvement in
the completion time, and the manipulation accuracy of the tasks.
Moreover, our method significantly increases usability and reduces
task load.

Index Terms: Virtual reality—Object manipulation—Manipulation
gains—Visual perception;

1 INTRODUCTION

Object manipulation is one of the most fundamental operations in
3D user interactions and can be used in many virtual reality (VR)
applications, such as product design, 3D object modeling, and virtual
object assembly. The efficiency and accuracy of the manipulation
directly affect the effectiveness of the applications.

Existing methods mainly adopt two ideas to improve the accuracy
and efficiency of object manipulation. The first idea is to manipulate
objects through multiple manipulation points. These multiple points
based manipulation methods [1, 10, 18, 19] require the user to manu-
ally input multiple points on the surface of the object or in 3D space,
and then constrain the manipulation of the object based on these
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points or the axes formed by these points, which improves object ma-
nipulation accuracy. They are more suitable for direct manipulation
of virtual objects by hand at close range, but when the manipulation
object is far away from the user, it is difficult to manipulate. The
second idea is to use the mapping between the physical motion of
the user’s hand and virtual objects to improve accuracy and effi-
ciency. These methods [5,13,20,21,29] calculate the control/display
ratio based on the speed of the user’s hand motion, and manipulate
objects in the virtual environment (VE) by using the ratio to adjust
the user’s hand motion. However, the efficiency and accuracy of
manipulation are affected due to the imprecise perception of the
user’s hand motion speed.

To address these problems, we propose a distant object manipula-
tion method with adaptive gains in VR to improve the efficiency and
accuracy of manipulation. We introduce manipulation gains, and
design experiments to collect user behavior data during manipulation
and determine the fitting function used to adaptively calculate ma-
nipulation gains in the process of distant object manipulation. Our
method works in the cases with the known targets, since this is true
for many VR manipulation guidance applications. In order to evalu-
ate the performance of our distant object manipulation method with
adaptive gains, we design a user study with three tasks. Compared
to the state of the art methods, our method achieves a significant
improvement in the completion time, and the manipulation accuracy
of the tasks. Our method significantly outperforms other methods in
usability and significantly reduces task load. Fig. 1 illustrates our
method in the scenario of an aircraft engine manipulation task.

In summary, our main contributions are as follows: 1) for the
first time, we obtain the maximum and minimum manipulation
gains that users can tolerate; 2) we propose a method to determine
manipulation gains adaptively in the process of manipulation; 3) we
design a user study to evaluate the efficiency and accuracy of our
method.

2 RELATED WORK

Many researchers have devoted themselves to object manipulation
in the past two decades. For a more comprehensive understanding



of object manipulation methods in VR, we recommend readers to
read the survey paper [16].

When we manipulate objects in VE, the most intuitive idea is to
manipulate virtual objects by hand [6, 10, 17, 23, 24]. Poupyrev et
al. proposed a Go-Go method [22] to manipulate objects by grow-
ing the user’s arm and nonlinear mapping to reach and manipulate
distant objects. Bowman et al. proposed a ray casting based object
manipulation method [2], in which users could grab and manipulate
objects by intersecting rays with objects. In order to improve the
accuracy and efficiency of object manipulation, Laurent et al. pro-
posed the 3-hand manipulation method [1], which allows 2-3 users
to collaboratively manipulate an object by manipulating three mis-
aligned manipulation points. Nguyen et al. introduced the 3-Point++
tool technology [18], which contains the center of gravity (6DOF)
and three manipulate points (3DOF) for the user to perform coarse
and fine manipulations. They also proposed the 7-Handle manipula-
tion technique [19] to generate a widget with multiple points, and
manipulate the object according to the widget. Gloumeau et al. in-
troduced PinNPivot manipulation technology [10], which uses pins
to constrain the rotation of the object to improve the efficiency and
accuracy of manipulation. These multiple point based manipulation
methods improve the efficiency and accuracy for direct manipulation
of virtual objects by hand at close range, but they are difficult to
manipulate objects which are far away from the user.

Some researchers used the speed of user control to determine the
factors of the manipulation. Frees et al. [5, 6] proposed the PRISM
method, which divides the user’s state into two modes according
to the speed of the hand. In precision mode, objects are made to
translate and rotate slower than the user’s hands by increasing the
control/display (CD) ratio; In normal mode, the user moves his hand,
and the object moves an equal distance. Wilkes et al. [29] scaled
the manipulation of the HOMER method [21] to make it more suit-
able for higher precision long- and short-range manipulation tasks
without slowing down. They also combined the PRISM and Go-Go
methods to improve the accuracy of the go-go method [30]. Nori-
taka [20] proposed two adjustment methods of position adjustment
and viewpoint adjustment. When the user uses one hand, the factor
in the two adjustment methods is determined based on the speed
of the user’s hand. When the user uses both hands, the distance
between the hands determines the factor. Kim et al. [13] proposed
a non-linear mapping method to improve the efficiency of the ma-
nipulation. It determines the combination coefficient through the
speed and acceleration of the translation and rotation of the hand. In
this method, the translation and rotation speed of the manipulated
object is always greater than or equal to the hand speed, which may
cause over-manipulation when the object is close to the target. A
3D user interface with anatomical 2D/3D shape matching was de-
signed to allow the user to adjust the translation and rotation gains
dynamically [14]. These methods use the speed of the user’s input
to determine the speed of the manipulation object. During the ma-
nipulations, users not only need to pay attention to the position and
pose of objects and targets in the view they observe, but also need
to pay attention to the speed of their hand motion, so the task load
of the user is high, which reduces the efficiency and accuracy of the
manipulation. Our method automatically adjusts the manipulation
based on the object-target relation in the user’s view, and the user
only needs to focus on the view.

Recently, view analysis has been used to guide user interaction.
Freitag et al. [7] adjusted the travel speed in the virtual scene by an-
alyzing the viewpoint quality of the entire scene. They also designed
an interactive assistance interface to guide users to the interesting
regions through the analysis of view [8]. Cao [3] proposed a path
redirection method based on the analysis of the visual features of the
user views. Wang et al. [26] introduced an object selection method,
which analyzes the occlusions in the user’s view and generates an
auxiliary view to improve the efficiency of VR selection. They also

quantified the view quality of multiple users to determine the denom-
inator of manipulation collaboration [27]. View analysis can be used
in many areas [25]. In our method, we compute the manipulation
gains according to the analysis of the target and the object to be
manipulated in the user’s views.

3 MANIPULATION GAINS

Figure 2: Manipulation gains. (a) Translation gain. (b) Rotation
gain. (c) Scale gain.

In this section, we introduce manipulation gains in the context
of manipulating virtual objects. In this paper, manipulation gains
are defined as some adjustment factors that map the hand control
motion to the motion of the manipulated virtual object. Inspired by
the translation, rotation and curvature gains in redirected walking, we
also divide the manipulation gains into three parts: translation gain,
rotation gain and scale gain. These three gains do not affect each
other in the process of manipulation. Compared to control/display
ratio [5], the manipulation gains are more general. Scale gain is not
included in the control/display ratio. Unlike the control/display ratio,
manipulation gains are not necessarily related to the user’s control.
It is an independent mapping, and the user can set it manually or
by using some functions. Manipulation gain is an extension of the
control/display ratio concept.

3.1 Translation Gain
When the tracking system detects a change in the position of the
user’s hand in the real world, the change is defined by the vector
dhand = dcur −dpre, where dcur is the position of the current frame
and dpre is the position of the previous frame, and the manipulated
object is in the virtual world coordinate system move dhand in the
corresponding direction. The translation gain gt is defined as the
quotient of the motion vector of the object dob ject in the VE to
the motion vector of the user’s hand dhand in the real world: gt =
dob ject/dhand .

When the translation gain gt is applied to the translation ma-
nipulation dhand , the manipulated object is moved by the vector
gt × dhand in the corresponding direction, as shown in Fig. 2 (a).
If the manipulated object is far away from the target position, a
translation gain greater than 1 helps the user quickly move the object
to the vicinity of the target object, thus improving the manipulation
efficiency. On the contrary, if the object and target are very close, the
translation gain should be less than 1, for example, gt = 0.1, which
is particularly useful for improving the accuracy of manipulation.

3.2 Rotation Gain
The rotation of the hand in the real world is specified by a vector
consisting of three angles. We recorded the rotation quaternion
qcur of the hand in the current frame and the rotation quaternion
qpre of the hand in the previous frame. The amount of change
in the rotation of the real-world hand qhand = qcur − qpre. The
rotation angle rhand is obtained by the quaternion qhand . Then the
object being manipulated in the VE rotates rhand . The rotation gain
gr is defined by the quotient of the rotation angle rob ject of the
manipulated object in the VE and the hand rotation angle rhand in
the real world: gr = rob ject/rhand .



When the rotation gain gr is applied to the rotation of the ma-
nipulated object in the VE, the angle of the object rotation is
rob ject = gr × rhand , as shown in Fig. 2 (b). If gr < 1, the rota-
tion angle of the object is smaller than the rotation angle of the hand.
In the case of gr > 1, the rotation angle of the object is greater than
the rotation angle of the hand. For example, if the user’s hand is
rotated 30 degrees, in the case of gain gr = 1, the object is rotated
30 degrees in the VE; if the gain gr = 0.5, the object is rotated 15
degrees; if the gain gr = 2, the object is rotated 60 degrees.

3.3 Scale Gain

The user scales the manipulated object in the virtual world by speci-
fying a scale vector. In our distant object manipulation, we increase
or decrease the value of the scale vector by clicking two buttons
on the handle. We set the initial value of the scale vector change
of a click to shand . The scale gain gs is defined by the quotient
of the object scale factor sob ject and the initial value shand , that is
gs = sob ject/shand

When the scale gain gs is applied to the scale of the manipulated
object in the VE, the change in the scale of the manipulated object
between two adjacent frames with a click is sob ject = gs × shand ,
as shown in Fig. 2 (c). If gs < 1, the change in the scale of the
manipulated object between two adjacent frames is less than shand .
In the case of gr > 1, the change in the scale of the manipulated
object between two adjacent frames is greater than shand .

4 VISUAL PERCEPTION BASED ADAPTIVE MANIPULATION
GAINS DETERMINATION

In this section, we design two experiments to obtain the maxi-
mum/minimum manipulation gains and the fitting function to com-
pute the gains adaptively in the manipulation process.

Participants. We have recruited 12 participants(7 males and 5
females), between 20 and 30 years old. Ten of our participants had
used HMD VR applications before. Participants had a normal and
corrected vision, and none reported vision or balance disorders. All
12 participants participated in Experiment 1 and Experiment 2, but
did not participate in the evaluation part of Experiment 2.

Hardware and software setup. We used an HTC Cosmos VR
HMD system with two handheld controllers that allow users to point
a virtual laser at a virtual environment (VE) and manipulate virtual
objects. The HMD was connected to its own workstation with a
3.6GHz Intel(R) Core(TM) i7-9900KF CPU, 16GB of RAM, and an
NVIDIA GeForce GTX 1080 graphics card. The tracked physical
space hosting the VR applications is 4m × 4m. We used Unity 2019.1
to implement our VR manipulation tasks. The virtual environments
were rendered at 90fps for each eye.

Three scenes. Cube scene contains a cube to be manipulated
and the target. The size of Box scene is 20m×20m, and the size
of the target cube is 1.0m× 1.0m× 1.0m. Bunny scene contains a
bunny and the target. The size of Bunny scene is 20m×20m, and
the size of the target is about 0.7m×0.6m×0.6m. Aircra f tengine
scene contains a component and an aircraft engine with a target
component. The size of Factory scene is 60m× 25m (Figure 1),
and the size of target component of the aircraft engine is about
1.2m×2.6m×2.8m.

Manipulation implementation. The object manipulation
method we implement is from [28]. When the user keeps hold-
ing the ’on’ button on the handheld controller, the translation and
rotation of the handheld controller are mapped to the virtual space
according to manipulation gains. The user moves the object with
his/her right hand, and rotates the object with his/her left hand.
The user clicks the ’Up’ button on the right handheld controller to
increase the scale transformation and clicks the ’Down’ button on
the left handheld controller to decrease the scale transformation of
the object.

4.1 Experiment 1: Determine the Maximum and Minimum
Gains

This section describes a visual perception experiment to obtain the
maximum and minimum values of manipulation gains acceptable
to the user. When gains are greater than the maximum value or less
than the minimum value, the user feels that their hand motion is
inconsistent with the visual feedback.

4.1.1 Experiment design.
This experiment includes 2 tasks: maximum gain task TMAX and
minimum gain task TMIN . Each operation (translation, rotation and
scaling) requires separate TMAX and TMIN . For translation operation,
the target is fixed in the scene and each time the virtual object is
initialized by translating randomly from the target, the distance to
the target of TMAX is within the range (1, 6), and of TMIN is within
the range (0.1, 1.5). For rotation operation, the target is also fixed in
the scene, and the virtual object is initialized by rotating randomly
from the target, the angle to the target of TMAX is within the range
(25,180), and of TMIN is within the range (0.1,40). For scaling
operation, the virtual object is initialized by scaling randomly from
the target, the scale to the target of TMAX is within the range (0.4,5),
and of TMIN is within the range (0.6,1.6). In TMAX , we set the range
of translate gain between 1 and 300, the range of rotate gain between
1 and 50, and the range of scale gain between 1 and 30. The initial
translation gain, rotate gain and scale gain are set to 150.5, 25.5,
15.5 respectively. In TMIN , we set the range of manipulation gains
between 0 and 1. The initial gain is set to 0.5.

Tasks. The user is required to use one of the three operations
(translation, rotation, scaling) to complete the task each time, for a
total of 18 times (3 scenes × 2 tasks × 3 operations).

In TMAX , the user is required to roughly manipulate the virtual
object to the target position with a given gain. Through visual
feedback, if the user feels that the motion of the virtual object is
too large relative to the movement of his/her hand, he/she needs
to press the “smaller” button on the handheld controller, and then
the virtual object is set to the original position, and the system uses
the dichotomy method to generate a small gain; on the contrary, the
user has to press the “larger” button on the handheld controller,
and then the virtual object is set to the original position, and the
system uses the dichotomy method to generate a large gain. The
user manipulates the object again using the newly generated gains,
and repeats the above process until he/she feels that the motion of
the virtual object is consistent with the magnitude of the motion of
his/her hand. In TMIN , the user is required to finely manipulate the
virtual object to the target position with a given gain. The process is
the same as that of TMAX .

4.1.2 Results.
Fig. 3 shows the scatter plots of the maximum and minimum val-
ues of manipulation gains collected through the above experiment.
Pearson correlation analysis provides evidence that the maximum
manipulation gain users can tolerate is weakly correlated with dis-
tance (r=-0.168, p=0.327) and angle (r=0.162, p = 0.337) and scale
(r = 0.193, p = 0.259) between the object and the target. Pear-
son correlation analysis also shows that the minimum manipula-
tion gain that the user can tolerate is weakly related to the dis-
tance (r = 0.074, p= 0.661), angle (r = 0.128, p= 0.456) and scale
(r = 0.141, p = 0.412) between the object and the target.

We average the maximum and minimum manipulation gains col-
lected from the participants as the maximum and minimum manip-
ulation gains that the user can tolerate. The maximum translation
gain, rotation gain and scale gain are: 24.36, 5.34 and 5.96, the
minimum gains are: 0.044, 0.053 and 0.057.

In TMAX and TMIN , we set the range of distance, angle, and scale
to overlap. Because we think in the overlapping range, the maximum
and minimum values are more likely related to distance, angle, and



scale. But from Fig. 3, the maximum and minimum values in the
overlapping range have nothing to do with distance, angle, and scale.

The maximum scale gain has larger variations of values. One
reason maybe users use the handheld controller’s translation and
rotation to control the translation and rotation continuously, and use
two buttons to control the scale. The discrete interactions may intro-
duce the difference. Another reason is that the minimum scale gain
is usually used to manipulate objects more precisely, and everyone
feels basically the same, so the variance of the data is small. The
maximum scale gain is used for fast scaling and rough interactions.
Therefore, the user is not sensitive to this value, and therefore the
variance is large.

4.2 Experiment 2: Find the View-dependent Fitting Func-
tions for Gains

When users manipulate objects, they observe the virtual scene
through the VR HMDs. The view seen by the user will change
with the movement of the user’s head, and the virtual objects in the
scene will be transformed according to the user’s hand interaction,
so real-time visual feedback is very important for user interactions.
For manipulation, the most important information in visual feedback
includes object and target position, rotation, size, and relative rela-
tionship. So we design an experiment to explore the relationship
between visual feedback and manipulation gains, and derive the
fitting functions for visual metrics and manipulation gains. Because
our method uses the information of the virtual object and the target
in 3D scenes to determine the gains, if the handle devices can track
the hand in real-time, our method does not need recalibration for
different handles. However, if the handles have large latency, they
need to be calibrated.

4.2.1 Experiment design
Object-target visual metrics. The object-target visual metrics are
to measure the relationship of the distance, angle and projected area
proportion between the manipulated object and the target under the
current viewpoint and its corresponding auxiliary viewpoints. It is a
triple (d,θ , p), where d, θ and p are the distance metric, the angle
difference metric and the projection area ratio of the manipulated
object and the target. The triple can be computed with algorithm 1.

Algorithm 1 Object-target visual metric

Input: object o, target t, viewpoint V , view I
Output: distance d, angle θ , area proportion p
1: Ao,At = Area(I,o, t);
2: p = Ao/At ;
3: Vl ,Vt = ConstrTopLeftFov(V , o);
4: bo,bt ,blo,blt ,bto,btt = OBB(V ,Vt ,Vl ,o,t);
5: co,ct ,clo,clt ,cto,ctt = GetOBBCenter(bo,bt ,blo,blt ,bto,btt );
6: lo, lt , llo, llt , lto, ltt = GetOBBAxis(bo,bt ,blo,blt ,bto,btt );
7: d1,d2,d3 = Distance(co,ct ,clo,clt ,cto,ctt );
8: θ1,θ2,θ3 = GetAngle(lo, lt , llo, llt , lto, ltt );

9: d=
√

d2
1 +d2

2 +d2
3 ;

10: θ =
√

θ 2
1 +θ 2

2 +θ 2
3 ;

11: return (d,θ , p);

The inputs of this algorithm are the geometry of the manipulated
object o and the target t, the current viewpoint V and the view
I rendered from V . The output is the triple (d,θ , p). First, we
calculate the projection area of the manipulated object and the target
and the ratio p of the projection area (lines 1-2). Then we construct
two auxiliary viewpoints based on the current viewpoint and the
position of the operated object: Vl is on the left side of the object
(Vlo is perpendicular to Vo), and Vt is directly above the object o.
The distance from these two auxiliary viewpoints to the manipulated

object is the same as the distance from the current viewpoint to
the manipulated object (line 3). After this, we project the object
and target from V , Vl and Vt separately and construct the oriented
bounding box (OBBs) for them (line 4). The centers and the long
axes of the OBBs are obtained (lines 5-6). The distance and angle
difference between the object and the target of each viewpoint are
calculated (lines 7-8). At the final distance d and the final angle
difference θ between the object and the target are obtained (lines
9-10), and return with the projection area ratio p (line 11).

Task. This experiment includes 1 task. The target is fixed in the
scene. The object to be manipulated is randomly placed in the scene,
and the distance to the target is in the range of (0.1, 16), its size is 0.3-
2 times the size of the target, and the rotation is completely random.
The initial gains used are 12.4 for translation, 2.9 for rotation, and
2.9 for scaling, which is computed by averaging the maximum and
minimum gains we obtained through the last experiment.

The task is to ask the user to adjust the manipulation gain by ma-
nipulating objects in the virtual scene to their corresponding targets
multiple times until he/she feels the most appropriate gain. Each
user is given 3 minutes of practice time before the formal experiment
begin. In the practice, the user manipulates the object with different
gains, so he/she has the most comfortable manipulation feeling,
which is his/her motivation to keep repeating manipulation in the
formal experiment to find the most comfortable gain. The user
needs to complete the task in a random one of the 3 scenes. After
the object is placed in the scene, the user manipulates the object
with initial gains. If the user thinks that the current gains are not
suitable, he/she presses the “reset” button to put the object back
to the starting status(the starting position, rotation and scaling), in-
crease or decrease the gains through the ’up’ and “down” buttons
on the handheld controller, and then manipulate the object to the
target. The user can see the adjustment of their own manipulation
gains through the slider in the virtual scene, as shown in Fig. 4.
This process is repeated until the user thinks the current gains are
appropriate. The user presses the “reset” button and then presses the
“save” button to save the current gains and the object-target visual
metric (d,θ , p) corresponding to those gains. After this, the system
automatically resets the object to be manipulated randomly to reduce
the distance between the object and the target. Then the user repeats
the above process to select the appropriate gains, and the system
records the gains and the corresponding (d,θ , p). The system resets
the object to be manipulated four times. For each user, the system
records five sets of data.
4.2.2 Results.

Translation Gain. We collected the translation gain obtained
in the experiment and the corresponding d. A simple regression
was verified the translation gain based on the corresponding d. We
found that with quadratic (F1,2 = 522.443, p < 0.001), cubic (F1,3 =
652.178, p< 0.001), logarithmic (F1,1 = 774.651, p< 0.001) model
regression equations are significant. The cubic model has R2 of
0.970, which is greater than R2 of the quadratic model (0.946)
and logarithmic model (0.928). The cubic model has a regression
standard error S of 1.396, which is smaller than that of the quadratic
model (1.886) and the logarithmic model (2.170). So we chose
the regression equation of the cubic model as our translation fitting
function. We plot the translation gain and the corresponding d
obtained in the experiment into a scatter plot, and perform fitting,
as shown in Fig. 5. Thus the adaptive translation gain function is
Equation 1. If the gain calculated using this equation is not within
the range of the minimum gain and maximum gain in Section 4.1.2,
[0.044, 24.36], then the gain is truncated, that is, if it is less than
0.044, use 0.044, and if it is greater than 24.36, use 24.36. gt = 0.016d3 −0.488d2 +5.254d +0.875

gt ∈ [0.044,24.36]
(1)



Figure 3: Minimum and maximum gains. (a) and (d) are the maximum and minimum translation gains.(b) and (e) are the maximum and
minimum rotation gains. (c) and (f) are the maximum and minimum scale gains. The green line represents the average of the maximum or
minimum manipulation gains.

Figure 4: The user view of the experiment to find the fitting function
of manipulation gains.

Rotation Gain. The same regression method was verified the
rotation gain based on the corresponding θ . We found that with
quadratic (F1,2 = 440.075, p < 0.001), cubic (F1,3 = 443.969, p <
0.001), logarithmic(F1,1 = 187.865, p < 0.001) model regression
equations are significant. The cubic model has an R2 of 0.986, which
is greater than the R2 of the quadratic model (0.936) and logarithmic
model (0.901). The cubic model has a regression standard error S
of 0.218, which is smaller than S of the quadratic model (0.471)
and the logarithmic model (0.587). So we chose the regression
equation of the cubic model as our rotation fitting function. We plot
the rotation gain and the corresponding θ into a scatter plot, and
perform fitting, as shown in Fig. 5. We use the fitting function as the
adaptive function of the rotation gain, the maximum value is 5.33,
and the minimum value is 0.054, which are reported in Section 4.1.2.
The adaptive rotation gain function is Equation 2. gr = 1.645×10−6θ 3 −0.0006θ 2 +0.08θ −0.132

gr ∈ [0.053,5.34]
(2)

Scale Gain. Regression analysis was verified the scale gain
based on the corresponding p. We found that with quadratic
(F1,2 = 111.890, p < 0.001), cubic (F1,2 = 252.211, p < 0.001)
model regression equations are significant. The cubic model has an
R2 of 0.876, which is greater than R2 of the quadratic model (0.811).
The cubic model has a regression standard error S of 0.565, which
is smaller than S of the quadratic model (0.697). So we chose the
regression equation of the cubic model as our final result. We plot
the scale gain obtained in the experiment and the corresponding p
into a scatter plot, and perform fitting, as shown in Fig. 5. We use
the fitting function as the adaptive function of the scale gain, the
maximum value is 5.96, and the minimum value is 0.057, which

are reported in Section 4.1.2. The adaptive scale gain function is
Equation 3. gs =−4.889p3 +25.541p2 −37.278p+17.380

gs ∈ [0.057,5.96]
(3)

Evaluation. We recruited 6 new participants(4 male, 2 fe-
male, 20-30 years old), repeated the experiment and collected the
same data. Then we calculated the manipulation gains with three
fitting functions using d, θ , and p in the collected data. We quan-
tify the error e and error rate er of the fit functions by comparing
the manipulation gains computed by the fitting functions gainscom
with the manipulation gains chosen by the participants we collected
gainschoose. The error e is calculated using |gainscom −gainschoose|.
The error rate er is calculated with Equation 4.

er =
1
N

N

∑
n=1

e
gainschoose

(4)

Fig. 6 shows the evaluation results for manipulation gains func-
tions. The results show the errors are very small, and er of translation
gain is 5.0%, rotation gain is 6.7%, and scale gain is 8.6%.

5 USER STUDY

5.1 User Study Design
We designed a user study with a manipulation task in 3 scenes to
evaluate the efficiency, accuracy, and task load of our method. The
hardware settings and manipulation implementation used in the user
study are the same as Sect. 4.

Participants. We have recruited 36 participants, 30 males and 6
females, between 20 and 30 years old. 24 of our participants had
VR experience before. Participants had normal and corrected vision,
and none reported vision or balance disorders. There are 4 control
conditions and an experimental condition. Control condition CC1
is with the traditional method, in which manipulation gains are 1.
Control condition CC2 is with the PRISM method [6]. Control con-
dition CC3 is the non-linear mapping method based on the velocity
and acceleration of hand [13]. Control condition CC4 is with the
dynamic gains based on the velocity of hand [14]. None of these
three methods discuss the scale gain, so we set scale gain to 1 for
them. The experimental condition EC is with our method.

Hypotheses. Our method was designed to allow the user to
manipulate an object to the target efficiently. Thus, we formulate the
following hypotheses:

H1: Users can manipulate an object to the target faster with EC
compared to CC1−4.



Figure 5: Best fitting functions for manipulation gains ( Left: translation, middle: rotation, right: scale ).

Figure 6: The evaluation of the fitting functions of the manipulation gains ( Left: translation, middle: rotation, right: scale).

a

b

c

d

Figure 7: The first scene S1 (left) of our user study is shown in
left column. The user is manipulating the cube to the green target
position (a), (b) shows the view seen from the user; The second
scene S2 is shown in right column. The user is manipulating bunny
to the green target position (c), (d) shows the view seen from the
user.

H2: Users can manipulate an object to the target more accurately
with EC compared to CC1−4.

H3:User task load of EC is lower than that of CC1−4.
H4: EC is easier to use than CC1−4 .
Task. During the task, the user is required to manipulate the

object as quickly and accurately as possible to a predefined target
position. There are 3 scenes in the task. The target in each scene
is fixed. The size of the object to be manipulated is randomly
generated, which is about 0.4-5 times the target size. The object
and the position of the user are placed at a random locations of the
scene in the initialization. After the user manipulates the object to
the target, he/she presses the “end” button to complete the task.

In Table scene (S1), the user is required to manipulate a cube
on the table to the target (Figure 7 left). The size of Table scene is
20m× 20m and the size of the target cube is 1.0m× 1.0m× 1.0m.
In Box scene (S2), the user is required to manipulate the bunny to
the target.In the beginning, the bunny is placed in a wooden box,
which provides more occlusions from the user’s viewpoint (Figure
7 right). The size of Box scene is 20m× 20m, and the size of the
target is about 0.9m×0.8m×0.8m. In Factory Scene (S3), the user
is required to manipulate a piece of blue component to the target
position in aircraft engine. There are many occlusions in the scene.
The size of Factory scene is 60m×12m (Figure 1), and the size of
target aircraft engine is about 1.2m×2.6m×2.8m.

Procedure. The task with one scene is referred to as the session,
so we have 3 sessions for the task. The order of the sessions is
random. In each session, the user is required to perform the manip-
ulation task 3 times with 5 conditions. The order of the task with
different conditions (5conditions× 3times) is also random. The
minimum interval between the session is one day and the maximum
interval is three days. For each session, participants practice for 1

minute before the task starts. When the user points to the object
need to be manipulated, our system starts recording time and other
objective metrics. We tell the user that we will record and evalu-
ate the task completion time, which indirectly encourages them to
complete the task as soon as possible.

Metrics. Task performance was measured with the objective
metrics: (1) task completion time, in seconds, indicates the time
from the participant pointing to the object until he/she presses the
’end’ button to confirm the end of the manipulation; (2) position
error, in millimeters, indicates the distance from the center of the
manipulated object to the center of the target position when the
participant presses the “end” button; (3) rotation error, in degrees,
indicates the angle difference between the local coordinate system
of the manipulated object and the target coordinate system when the
participant presses the “end” button. If the angle difference of the
three coordinate axes is α , β , γ , the rotation error is

√
α2 +β 2 + γ2;

(4) scale error, in times, indicates the ratio of the absolute value of
the difference between the diagonal length of the bounding box of
the manipulated object and the diagonal length of the target bound-
ing box to the diagonal length of the target bounding box when the
participant presses the “end” button. We also evaluated the percep-
tion with four subjective metrics: user task load, measured with
the standard NASA TLX questionnaire [11, 12], and six aspects
of usability measured with the usability questionnaire [13]. The
six aspects of usability are ”Intuitiveness” (IN), ”Efficiency” (EF),
”Accuracy” (AC), ”Naturalness” (NA), ”Satisfaction” (SA) and ”Eas-
iness” (EA). After each condition in the session, the data of the
task-load questionnaire is collected. After all three sessions, the data
of the usability is collected.

Statistical analysis. For each metric, the values of EC were
compared to those of CC1, CC2, CC3 and CC4 respectively using a
one-way repeated-measures ANOVA [9]. The sphericity assumption
is evaluated using the Mauchly test [15]. When the assumption
is violated, a Greenhouse-Geisser correction is applied. Then an
overall ANOVA was conducted to investigate whether one can reject
the null hypothesis that there is no statistically significant difference
between the conditions. When the null hypothesis was rejected, the
differences between the four pairs were analyzed with posthoc tests
using the Bonferroni correction. For the time dependent variable we
quantified the size of the effect using Cohen’s d [4].

5.2 Results
5.2.1 Task performance
Task completion time. Table 1 gives the task completion time.
Statistical significance is indicated by an asterisk. The sphericity
assumption is violated: p < 0.001(S1,S2,S3). After applying the
Greenhouse-Geisser correction, the overall ANOVA reveals sig-
nificant differences between the five conditions: (F2.100,50.402 =



Table 1: The completion time, in seconds.

Task Condi
-tion

Avg
± std. dev.

(CCi-EC)
/ CCi

p Cohen’s
d

Effect
size

S1

EC 53.30±12.10
CC1 81.27±23.90 34.4% < 0.001∗ 1.48 Very Large
CC2 79.83±24.91 33.2% < 0.001∗ 1.35 Very Large
CC3 74.90±23.30 28.8% < 0.001∗ 1.16 Large
CC4 68.67±10.96 18.3% < 0.001∗ 1.33 Very Large

S2

EC 44.00±3.67
CC1 86.75±13.14 49.3% < 0.001∗ 4.43 Huge
CC2 81.50±14.79 46.0% < 0.001∗ 3.48 Huge
CC3 66.75±9.36 34.1% < 0.001∗ 3.20 Huge
CC4 65.25±5.76 32.6% < 0.001∗ 4.40 Huge

S3

EC 51.75±18.39
CC1 86.61±12.37 40.2% < 0.001∗ 2.22 Huge
CC2 85.13±17.35 39.2% < 0.001∗ 1.87 Very Large
CC3 84.01±32.66 38.4% < 0.001∗ 1.22 Very Large
CC4 83.37±9.42 37.9% < 0.001∗ 2.16 Huge

14.148,P < 0.001) for S1, (F2.230,49.03 = 56.24,P < 0.001) for S2,
and (F1.658,8.138 = 24.672,P < 0.001) for S3. Post-hoc analysis
reveals that EC was significantly shorter than for CC1, CC2, CC3
and CC4 for both scenes. Compared with all control conditions of
all three scenes, our method significantly improves the task time
performance, and the effect size ranges from ”Large” to ”Huge”.

Position error. Table 2 shows the position errors all condi-
tions for these three scenes. The sphericity assumption is vio-
lated: p< 0.001(S1,S2,S3). After applying the Greenhouse-Geisser
correction, the overall ANOVA reveals significant differences be-
tween the five conditions: (F2.020,48.482 = 12.743,P < 0.001) for
S1, (F1.858,42.724 = 35.516,P < 0.001) for S2, and (F2.612,60.070 =
11.340,P < 0.001) for S3. Post-hoc analysis reveals that EC was
significantly smaller than for CC1, CC2, CC3 and CC4 for both
scenes. Compared with all control conditions of all three scenes,
our method reduced position error significantly, and the effect size
ranges from ”Medium” to ”Very Large”.

Rotation error. Table 3 gives the rotation error of all condi-
tions for these three scenes. The sphericity assumption is vio-
lated: p< 0.001(S1,S2,S3). After applying the Greenhouse-Geisser
correction, the overall ANOVA reveals significant differences be-
tween the five conditions: (F2.592,55.858 = 28.506,P < 0.001) for
S1, (F2.539,58.403 = 42.141,P < 0.001) for S2, and (F2.391,54.990 =
26.746,P < 0.001) for S3. Post-hoc analysis reveals that EC was
significantly smaller than for CC1, CC2, CC3 and CC4 for all scenes.
Compared with all control conditions of all three scenes, our method
reduced rotation error significantly, and the effect size ranges from
”Large” to ”Huge”.

Scale error. Table 4 shows the scale errors of all conditions
for these three scenes. The sphericity assumption is violated:
p < 0.001(S1,S2,S3). After applying the Greenhouse-Geisser
correction, the overall ANOVA reveals significant differences be-
tween the five conditions: (F2.100,50.402 = 14.148,P < 0.001) for
S1, (F2.230,49.03 = 56.24,P < 0.001) for S2, and (F1.658,38.138 =
24.672,P < 0.001) for S3. Post-hoc analysis reveals that EC was
significantly smaller than for CC1, CC2, CC3 and CC4 for all scenes.
Compared with all control conditions of all three scenes, our method
reduced scale error significantly, and the effect size ranges from
”Large” to ”Huge”.

5.2.2 Perception

Figure 8 shows the results of the task load. The sphericity assump-
tion is violated: p = 0.032(S1) and p < 0.001(S2,S3). After apply-
ing the Greenhouse-Geisser correction, the overall ANOVA reveals
significant differences between the five conditions: (F2.750,52.256 =
40.455,P < 0.001) for S1, (F1.873,35.588 = 57.251,P < 0.001) for
S2, and (F2.085,39.619 = 59.698,P < 0.001) for S3. Post-hoc analy-

Table 2: The position error, in millimeters.

Task Condi
-tion

Avg
± std. dev.

(CCi-EC)
/ CCi

p Cohen’s
d

Effect
size

S1

EC 2.3±1.2
CC1 6.7±5.1 66.0% < 0.001∗ 1.18 Large
CC2 5.8±6.2 60.8% 0.0193∗ 0.79 Medium
CC3 4.4±2.3 48.6% 0.0011∗ 1.15 Large
CC4 2.99±4.3 64.1% < 0.001∗ 1.29 Very Large

S2

EC 2.0±1.4
CC1 3.9±1.5 47.3% < 0.001∗ 1.26 Very Large
CC2 4.5±3.6 54.4% < 0.001∗ 0.90 Large
CC3 4.0±6.4 38.2% 0.00433∗ 0.98 Large
CC4 8.1±4.3 44.9% 0.00269∗ 1.04 Large

S3

EC 3.2±1.5
CC1 6.3±3.2 49.7% < 0.001∗ 1.25 Very Large
CC2 5.4±3.0 41.2% 0.006∗ 0.94 Large
CC3 7.7±3.3 58.5% < 0.001∗ 1.75 Very Large
CC4 7.8±3.2 59.3% < 0.001∗ 1.86 Very Large

Table 3: The rotation error, in degrees.

Task Condi
-tion

Avg
± std. dev.

(CCi-EC)
/ CCi

p Cohen’s
d

Effect
size

S1

EC 0.88±0.17
CC1 2.62±1.02 66.6% < 0.001∗ 2.40 Huge
CC2 1.60±0.96 45.3% 0.002∗ 1.05 Large
CC3 1.85±0.48 52.5% < 0.001∗ 2.68 Huge
CC4 2.61±1.00 66.5% < 0.001∗ 2.42 Huge

S2

EC 1.38±0.79
CC1 5.25±1.38 73.7% < 0.001∗ 3.43 Huge
CC2 2.79±1.57 50.5% 0.0012∗ 1.13 Large
CC3 4.68±1.18 70.5% < 0.001∗ 3.28 Huge
CC4 5.22±1.78 73.5% < 0.001∗ 2.79 Huge

S3

EC 1.07±0.34
CC1 2.67±0.84 59.9% < 0.001∗ 2.51 Huge
CC2 1.68±0.69 36.4% 0.0012∗ 1.12 Large
CC3 1.88±0.30 43.0% < 0.001∗ 2.51 Huge
CC4 2.20±0.69 51.3% < 0.001∗ 2.08 Large

sis reveals that the task load of EC was significantly smaller than
that of CC1, CC2, CC3 and CC4 for all scenes.

The usability results are shown in Fig. 9. Over all six questions,
the sphericity assumption is violated (p = 0.001). After applying
the Greenhouse-Geisser correction, the overall ANOVA reveals sig-
nificant differences between the five conditions (F3.029,157.516 =
44.768, p < 0.001), and post-hoc analysis reveals that EC is signif-
icantly easier to use than CC1, CC2, CC3 and CC4. The scores for
the six questions violate the sphericity assumption (p < 0.001, p =
0.014, p < 0.001, p < 0.001, p = 0.001,and p < 0.001), after apply-
ing the Greenhouse-Geisser correction, the overall ANOVA reveals
significant differences between the five conditions (F2.712,70.516 =
13.162, p < 0.001;F1.885,18.851 = 17.434, p < 0.001;F1.934,32.880 =
12.446, p < 0.001;F1.934,32.880 = 22.815, p < 0.001;F2.521,32.768 =
40.276, p < 0.001;F1.803,36.058 = 11.577, p < 0.001).

5.3 Discussion
The results in Table 1 support H1: The reasons for the efficiency of
our method may be: (1) When the object is far away from the target
in the user’s view, the manipulation gains obtained by our method in
each frame are greater than 1, which allows the user to manipulate
the object to the nearby region of the target quickly. When the object
is near the target in the user’s view, our method generates the gains
smaller than 1, which reduces the chances of over manipulation.
(2) The manipulation gain is automatically calculated according to
the view, the user does not need to consider the speed of the hand



Table 4: The scale error, in times.

Task Condi
-tion

Avg
± std. dev.

(CCi-EC)
/ CCi

p Cohen’s
d

Effect
size

S1

EC 0.003±0.001
CC1 0.013±0.005 73.3% < 0.001∗ 2.50 Huge
CC2 0.011±0.007 69.7% < 0.001∗ 1.49 Very Large
CC3 0.012±0.007 70.9% < 0.001∗ 1.62 Very Large
CC4 0.011±0.007 70.4% < 0.001∗ 1.61 Very Large

S2

EC 0.03±0.012
CC1 0.058±0.023 47.7% < 0.001∗ 1.49 Very Large
CC2 0.053±0.021 43.2% < 0.001∗ 1.33 Very Large
CC3 0.047±0.018 35.5% < 0.001∗ 1.07 Large
CC4 0.059±0.028 49.3% < 0.001∗ 1.34 Very Large

S3

EC 0.007±0.004
CC1 0.012±0.005 45.1% < 0.001∗ 1.19 Large
CC2 0.0014±0.010 54.0% 0.0024∗ 1.05 Large
CC3 0.019±0.010 65.4% < 0.001∗ 1.58 Very Large
CC4 0.015±0.008 57.1% < 0.001∗ 1.44 Very Large

Figure 8: Box plots for task load scores of the five conditions and
the three scenes. Asterisks denote statistical significance.
motion, and the speed of the hand motion is not easy to control.

Generally, CC3 and CC4 are more efficient than CC1 and CC2,
because the manipulation gains of CC3 and CC4 can be greater than
1, and the manipulation gains of CC2 and CC1 are always equal to
or smaller than 1. When the object is far away from the target, CC4
is faster than CC3. The motion of the hand from a static state to
high speed to a static state usually requires a start-up phase and a
cool-down phase. During the start-up phase and cool-down phase,
the hand speed is not large, but the acceleration is large. CC3 only
considers the speed of hand motion, CC4 considers both the speed
and acceleration of hand motion, so CC4 can also achieve a larger
gain during the start and cooling phases of hand movement. CC1 is
slower than CC2 because the gain of CC2 is less than 1 and reduces
the chance of over manipulation when the object is near to the target.

The results in Table 2, Table 3, and Table 4 support H2: The
position, rotation and scale errors of EC were significantly smaller
than those of CC1, CC2, CC3 and CC4 for all scenes. This is because
during the manipulation, when the differences between the position,
rotation, and scaling of the object and the target in the current user
view and the auxiliary views are getting smaller and smaller, our
manipulation gain will continue to decrease automatically, allowing
the user to more finely adjust the object to be manipulated to the
target, thereby improving the accuracy of the manipulation.

The results in Fig. 8 support H3:. Compared with all control
conditions, the task load of our method is reduced significantly. This
is because the gains of CC1 and CC2 are always equal to or smaller
than 1, and it takes a long time for the user to manipulate the object
to the target, which makes the user fatigued. For CC2, CC3 and CC4,
the gains are related to the speed of hand motion, the user had to pay
more attention to both his/her hand motion and his/her view, then
manipulate the object. With our method, the gains are computed
adaptively according to the user’s view automatically, so the user
only needs to focus on his/her view, then manipulate the object.

The results in Fig. 9 support H4: With our method, the user

Figure 9: The usability score of per condition. Significant differ-
ences are denoted with asterisks.
observes his/her current view, obtains the relationship between the
object and the target, and manipulates the object, which is the same
experience as in reality. Our method provides a more intuitive and
natural way to manipulate objects, and it is easy for users to use. In
control conditions (C2, C3, and C4), the user had to focus on the
speed of the hand motion and the content of his/her view simultane-
ously to manipulate the object. Moreover, the better performance of
our method makes the user feel more effective and accuracy of our
method. The experience makes the user more satisfied.
6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have proposed a distant object manipulation method based on
adaptive gains in VR to improve the efficiency and accuracy of
manipulation. We introduced manipulation gains, and constructed
the fitting functions to model the relations between the manipulation
gains and the object-target visual metrics. We designed a user study
to evaluate the performance and perception of our method. The
results showed compared to the state of the art methods, our method
achieved a significant improvement in the efficiency and the accuracy
of the manipulation. Our method significantly reduces task load, and
outperforms other methods in usability.

One limitation of our method is that we compute the object-target
visual metrics with the current user view and two auxiliary views.
The gain may also vary significantly when the visual metrics of the
user view change little or no change, while the visual metrics of the
secondary view vary greatly. The user may feel that the hand motion
is inconsistent with the visual experience. Another limitation is that
currently we only consider the gain calculation method when the
user is standing in a relatively fixed position to manipulate the object.
If the user needs to move around during the manipulation, and the
position changes too much, both the user view and the auxiliary
views may change greatly, and the calculated gain may also change
greatly, resulting in the discontinuity of the gain. Our method now
doesn’t work for the cases with unknown targets since we use the
information of the target to compute the gains.

One future work can be done is to remove auxiliary views and add
some manipulation points to improve the intuitiveness and natural-
ness of the manipulation. We will extend our work to more general
cases in VR, such as the users moving and manipulating the object in
the scene. In order to alleviate the requirement of prior knowledge of
the target pose and scale, one future work is to have a prediction step
that tries to identify the most likely target in the scene or captures
the user’s gaze at the target area, and guides the calculation of gains
when the target is missing in freely manipulating objects for novel
creations. In our user study, the users were required to manipulate
the predefined number of objects to the targets. In future, an interest-
ing user study to investigate the distant object manipulation accuracy
when users complete manipulation tasks with different durations can
be designed.
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